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Microwave measurements of the radiation from a weakly ionized low-energy plasma immersed in a 
magnetic field show significant departures from the Kirchhoff-Planck law. The departures can be explained 
by taking account of the non-Maxwellian distribution of the radiating electrons. By comparing the measured 
and calculated radiation temperatures we estimate the distribution of electron velocities and their mean 
energy. 

I. INTRODUCTION 

THE radiation spectra emitted by plasmas at radio 
and microwave frequencies can be grouped into 

three broad classes. The first class includes spectra that 
can be interpreted on the basis of the classical theory of 
thermal radiation. The radiation originates predomi
nantly from the motions of the free electrons in the field 
of ions and atoms (bremsstrahlung), and from the 
orbital motion of free electrons in externally applied 
magnetic fields (cyclotron radiation). The electrons are 
assumed to have a Maxwellian distribution of velocities 
and the classical radiation laws and concepts are ac
cepted as valid. The radiation intensity cannot exceed 
that of a black body with a temperature equal to that 
of the free electrons. 
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FIG. 1. The radiation temperature as a function of magnetic field 
measured in neon and argon (discharge current = 10 mA, gas 
pressure = 0.28 mm-Hg), and xenon (discharge current = 20 mA, 
gas pressure = 5.9 mm-Hg). 
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The second class of radiation is thought to originate 
from cooperative motions of the free charges induced by 
perturbations of the plasma (plasma oscillations). The 
radiation intensity often exceeds blackbody intensity by 
many orders of magnitude. The interpretation of these 
emission spectra is at best semiquantitative. 

In the third class we include radiation not due to 
cooperative motions, but where nonthermal spectra 
arise from departures of the velocity distribution of the 
radiating electrons from a Maxwellian distribution. 
Here, too, the radiation can differ greatly from that 
which would be observed in a Maxwellian plasma with 
electrons of the same average energy. The concept of 
blackbody radiation is not applicable. In this paper, we 
are concerned only with radiation that we have grouped 
in this class. 

On the basis of the classical theory of thermal radia
tion, the emission of electromagnetic waves from the 
plasma is characterized by the temperature T of the free 
electrons that participate in the emission and absorption 
processes. The essence of the theory is the Kirchhoff-
Planck law which can be stated as follows: In a given 
volume element of plasma, the ratio of the emission 
coefficient j a to the absorption coefficient aw, for radia
tion in the angular frequency interval between a> and 
co-\-do), is 

jJaa = B(<a,T,n). (1) 

The quantity B represents the intensity of equilibrium, 
blackbody radiation in the volume element considered 
and is only a function of the frequency a>, the local 
temperature T, and the refractive index n of the plasma. 
A measurement of B(u,Tyn) is a means of finding the 
electron temperature. 

A cylindrical positive column of a glow discharge was 
subjected to an axial magnetic field and the apparent 
electron temperature wras deduced from microwave 
radiation measurements. Figure 1 illustrates the results 
that were obtained in neon, argon, and xenon glow 
discharges. The apparent temperature is plotted as a 
function of the magnetic field, at a fixed frequency of 
observation o) equal to 67rX109 rad/sec; (oib=eB/m is 
the electron cyclotron frequency, where B is the strength 
of the magnetic field). We note the large peaks in the 
apparent temperature at the electron cyclotron fre
quency, OJ = CO6- These peaks must not be confused with 
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FIG. 2. The radiation temperature as a function of magnetic 
field measured in hydrogen and helium (discharge current = 10 mA, 
gas pressure = 0.28 mm-Hg), and mercury (discharge current = 60 
mA, gas pressure=0.088 mm-Hg). 

the enhanced emission, j u , caused by cyclotron radia
tion, which in these experiments would be exactly 
balanced by the enhanced cyclotron absorption, o^, in a 
plasma with a Maxwellian distribution of electron 
velocities. In contrast to Fig. 1, Fig. 2 shows the same 
measurements in discharges produced in hydrogen, 
helium, and mercury. We now observe the absence of 
peaks in the apparent temperature. 

The foregoing observations are consistent with calcu
lations of ja/au for a lowly ionized, low-energy plasma 
with a non-Maxwellian distribution of electron veloci
ties. The difference in the observations shown in Figs. 1 
and 2 is explained on the basis of the energy dependence 
of the electron-neutral collision cross sections. 

II. THEORY 

A. Calculations of the Emission and 
Absorption Coefficients 

Our calculations and experiments are concerned with 
plasmas whose refractive index is close to or equal to 
unity, so that the interpretation of the measurements is 
not subject to difficulties caused by reflections from 
plasma boundaries. Also, rather simple concepts of the 
quantum-mechanical theory of radiation can be used in 
deriving the emission and absorption coefficients. 

In the volume element of plasma surrounding point 
r, we choose a group of electrons of density dX (V) that 
have velocities between v' and v '+dv ' ; and a second 
group of electrons dX(v), with velocities between v and 
v + d \ . The energy of the electrons labeled with a prime 
is greater than that of the unlabeled electrons. 

As a result of a radiative interaction of an electron, a 
photon of frequency o> is either emitted or absorbed. The 
frequency of the photon is given by the Bohr frequency 
condition, 

hoo—^tnv'2—^mv2, (2) 

where 2irh is Planck's constant h. The form of the Bohr 
condition implies that a free electron remains in a free 
state after completion of the emission or absorption 
process. Transitions of this kind are the main sources of 
radio and microwave emission from plasmas. 

Three fundamental processes can take place when an 
electron in one state (V or v) goes to state (v or v'). 
These processes are: spontaneous emission, absorption, 
and stimulated emission. The net absorption aw is the 
difference between the absorption and the stimulated 
emission. 

Spontaneous emission goes on at a rate that is inde
pendent of the presence or absence of the radiation field. 
Let Tyw(v',r,s) be the rate at which energy is emitted 
spontaneously per unit solid angle, in the direction s by 
one electron with a velocity in the range dv' (which then 
decays to the state v), thus giving rise to radiation in a 
unit frequency interval. The rate of emission by dN(\f) 
electrons per unit volume of plasma is 

77w(v',r,s)^(v'). (3) 

Writing Eq. (3) in terms of the steady-state distribution 
function of electron velocities / , we obtain for the rate 
of spontaneous emission, 

^ ( v ' , r , s ) / ( v ' ) r ) ^ ' , (4) 

where dh' is the volume element in velocity space. 
Stimulated emission is proportional to the intensity of 

radiation 1^ at the point of the medium in question. Let 
*?<os(V,r,s) be the rate of emission by an electron v' per 
unit intensity of radiation present per unit solid angle 
per unit frequency interval. The total rate by dX{\') 
electrons per unit volume is 

i7«s(v^,s)J„(r ,s)/(v>)dV. (5) 

An electron in the lower state v reaches state v' after 
absorption of a photon of energy hw. Let i7„A(v,r,s) be 
the rate of absorption by this electron per unit intensity 
of radiation present. The rate of absorption by dN(\) of 
these electrons is 

w(v,r,s)J„(r,s)/(v,r)<Pi>. (6) 

We can compute the emission and absorption coeffi
cients, i«(r,s) and a«(r,s), at a given point r of the 
plasma and in a given direction s by integrating Eqs. 
(4), (5), and (6) over all electron velocities and noting 
that aw is defined by the relation dl0)=—a03l0}ds. 
Omitting, for simplicity, the vectors r, s from our nota
tion, we obtain 

and 

i.= /"u..(vW)<*v, (?) 

aM= LaA(v)f(v)dh- fr,„s(v')f(y')d3v', (8) 

where the magnitudes of v' and v are related through 
Eq. (2). Note that dh'^dh. In the special case of an 
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isotropic distribution it follows from Eq. (2) that 
dh'/dh = v'2dvf/v2dv=v'/v. 

The three emission and absorption rates TJW, rjwS, and 
VaA bear definite relationships to one another. These 
relationships are calculated by assuming that the rate 
at which an electron emits or absorbs is independent of 
the state of the plasma; that is, they do not depend 
either on the intensity of radiation field, or on the 
distribution of electron velocities. This is a valid as
sumption in tenuous plasmas. 

For the purpose of establishing relationships between 
the three rates, we may choose any state for the plasma. 
We enclose the whole medium in a large adiabatic 
shield of constant temperature T, and allow everything 
to come to thermodynamic equilibrium with the con
tainer. When the plasma is in this state, the following 
properties are t rue: 

(a) The electrons have a Maxwellian distribution of 
velocities, given by 

f(v) = N(m/2wkTy/2 tx^{-mv2/2kT), (9) 

where N is the electron concentration. 
(b) The intensity of the radiation field is everywhere 

the same within the container and is given by the Planck 
radiation formula (for one polarization) 

^ ( « , r ) = (hu*/ST3c2)lexp(ha/kT)-1]"1, (10) 

where c is the velocity of light in free space. 
(c) For every pair of states, v' and v, in which the 

electrons find themselves, the rate of "emitting" transi
tions, v'—»z>, is exactly balanced by the rate of "ab
sorbing" transitions, v—>v'. This is the principle of 
detailed balance. 

Using statements (a), (b), and (c), in conjunction 
with Eqs. (4), (5), and (6), we obtain 

77w(v0^m^2 /2&^V = ^(a) ,r)[77 w A(v)e-^2 / 2 f c r^ 

- W v V - ' ^ d V ] . (U) 
After substituting Eq. (2) in (11) and rearranging terms, 
we find that 

, N D?„(v')/Wv')] , x 
B(u,T = . 12) 

Equations (10) and (12) must hold simultaneously at all 
frequencies. For this to be true, the following identities 
must be satisfied: 

^ 0 = ( ^ V 8 7 r V ) ^ ( v ' ) , (13) 
and 

w(v)^=i?«fi(vO<iV. (14) 

Equations (13) and (14) are equivalent to the well-
known relations between the Einstein A and B coeffi
cients,1 but written in a form more appropriate in the 

J A. Einstein, Physik. Z. 18, 121 (1917); G. Cillie, Monthly 
Notices Ray Astron. Soc. 92, 820 (1932); L. Oster, Laboratory of 
Marine Physics, Yale University, Technical Memorandum No. 73, 
April, 1961 (unpublished). 

calculation of the emission and absorption rates by free 
electrons. 

The emission and absorption coefficients given by 
Eqs. (7) and (8) may be simplified, since any two of the 
three parameters 7jw, rj^Sy V^A can be eliminated, with the 
aid of Eqs. (13) and (14). In terms of the rate of 
spontaneous emission, 

7 -= /fl.(V)/(v')<*V, (15) 

and 

a w = ( S T T V / M / ^ ( v ' ) [ / ( v ) - / ( v ' ) ] < f V . (16) 

I t is useful to denote the ratio of the emission coeffi
cient to the absorption coefficient, ju/au, by a quantity 
Sa called the source function. From Eqs. (15) and (16), 
we obtain 

/^(v')/(v'yV 
flw3 J 

5 „ = . (17) 

J^(v')[/(v)-/(v')^V 

When the distribution of electron velocities is Max
wellian, it can be shown that the source function Sa> 
equals the blackbody intensity B(coyT), given by Eq. 
(10). Thus, in agreement with Eq. (1), 

S^jJa^B^T). (18) 

Equation (18) is generally proved for systems that 
are in exact thermodynamic equilibrium. Here, we 
derived it under much less restrictive conditions. Since 
the parameters j u and aw are properties of the radiating 
electrons only, Eq. (18) should be true whenever the 
electrons have a Maxwellian distribution, and no other 
criteria need be imposed. Since Eq. (17) refers to an 
elementary volume element, it remains valid even if f(v) 
and rjuiv) vary from point to point in the plasma. 

We now calculate the emission coefficient, the ab
sorption coefficient, and the source function for radia
tion at low frequencies by taking Eqs. (15), (16), and 
(17) to the limit, hw —»0. We consider only isotropic 
distributions of electron velocities since in our plasmas 
the drift velocities of the electrons in the applied dc 
electric field are very small compared to their random 
velocities. 

As the frequency decreases, the speed vr of the upper 
state approaches more and more closely the speed v of 
the lower state. We write that 

v' = v+Av, (19) 

where Ai>, obtained from Eq. (2), is given by 

Av^hco/mv. (20) 

We expand the distribution function in a Taylor series, 
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with the result that 

df 
f(v') = f(v)+—Av+-

dv 
(21) 

Inserting these results in Eqs. (15), (16), and (17) gives 

j w = / vMf(v] )^TTV2dv, 

df(v) 
ao)=-(8wzc2/a)2) I vM 4wv2dv, 

and 
h 

0&J — ~ 

fcrV 

dU 

J vMfivWdv 

[vMLdfW/dUYdv 

(22) 

(23) 

(24) 

Here \J — \mi)2 is the kinetic energy of the electron. 
The source function for each of the two polarizations 

of the radiation, given by Eq. (24), depends on the 
detailed behavior of the radiating processes taking 
place inside the plasma and on the direction of propaga
tion of the radiation. The one exception arises for a 
plasma with a Maxwellian distribution, where Eq. (24) 
reduces to the simple result, 

S„=B(<a,T)=(cfi/S**<?)(kT), (25) 

which is the Rayleigh-Jeans limit, hay^kT, of the 
Kirchhoff-Planck equations (10) and (18). 

We may write the source function of Eq. (24) sym
bolically as 

S„={u2/Wc2){kTr), (26) 

and call Tr the radiation temperature. This is the 
quantity to which we refer in our measurements shown 
in Figs. 1 and 2. Unless the distribution function is 
Maxwellian, Tt is a fictitious temperature, and is merely 
a convenient way of describing the radiation field. 
Generally, Tr is a function of frequency co, the radiation 
process or processes 7?w, the distribution function / , and 
the direction of propagation of the radiation. 

The source function given by Eq. (26) and the radia
tion temperature are closely related to the intensity of 
radiation Iu that emanates from a plasma. If we assume 
that Tr is everywhere the same within the plasma, and 
sum the emissions and absorptions at every point of a 
ray, we obtain 

/ . = 0 V « - ) [ l - e x p ( - r ) ] . (27) 

Here r is the optical thickness given by 

7 
J o 

a^dsy (28) 

the plasma. Substituting Eq. (26) in Eq. (27), we obtain 

/w== ( c o 2/ 8 7 r 3 c 2)^ : r r [ l -exp(- r ) ] . (29) 

When the distribution function is non-Maxwellian, 
the intensity 7W can greatly exceed the blackbody 
radiation B(oo,T) of a plasma with electrons of the same 
mean energy. Indeed, calculations2 suggest that, for 
certain emission processes and for certain distribution 
functions, the absorption coefficient aw can be negative 
(stimulated emission exceeds absorption), in which case 
the radiation amplifies in passing through the plasma. 
In our experiments a negative absorption has not oc
curred ; however, an increase in the stimulated emission 
in excess of what it would have been in a Maxwellian 
plasma has been observed. This is basically the origin 
of the peaks shown in Fig. 1. 

A classical approach to the calculation of the radia
tion temperature, through the use of Maxwell's equa
tions and the Boltzmann equation, leads to the same 
result as given above.3 An alternate treatment of radia
tion phenomena to that discussed in this paper is one in 
which the noise generated by the plasma is ascribed to 
electron current fluctuations. This concept leads to a 
Nyquist theorem for plasmas4 and relates the time-
averaged mean-square fluctuations to the plasma con
ductivity and the electron temperature. By extending 
the Nyquist theorem to plasmas with non-Maxwellian 
distributions, Plantinga5 derived the same expression 
for the radiation temperature as we do here, except that 
he restricted his calculations to bremsstrahlung in the 
absence of magnetic fields. Bunkin6 derives a Nyquist 
theorem valid for dense plasmas both in the presence 
and absence of magnetic fields. His result for the 
radiation temperature reduces to ours in the limit of a 
plasma with a refractive index close to unity. Calcula
tions of the tensor conductivity elements of a mag
netized plasma, from which the absorption coefficient 
can be calculated, are given by Harris,7 Weibel8 and 
Sagdeev and Shafranov.9 These calculations reduce to 
our absorption coefficient given by Eq. (23), in the 
limit of tenuous plasmas, with isotropic distributions. 

where ds is an element of length along the path of the 
ray and L is the total length that the ray traversed in 

2 R. Q. Twiss, Australian J. Phys. 11, 564 (1958); G. Bekefi, J. L. 
Hirshfield, and S. C. Brown, Phys. Fluids 4, 173 (1961)- Phys. 
Rev. 122, 1037 (1961); J. Schneider, Z. Naturforsch. 15a, 484 
(1960); Phys. Rev. Letters 2, 504 (1959). 

3 S. C. Brown and G. Bekefi, "Conference on Plasma Physics 
and Controlled Nuclear Fusion Research, Salzburg, September 
1961," Paper No. CN-10/171 Q. Nucl. Fusion (to be published)]. 

4 P. Parzen and L. Goldstein, Phys. Rev. 82, 724 (1951); S. M. 
Rytov, Theory of Electrical Fluctuations and Thermal Radiation 
(U.S.S.R. Academy of Sciences, Moscow, 1953) [translation: Air 
Force Cambridge Research Center, Bedford, Massachusetts, 
Report. No. AFCRC-TR-59-162, July, 1959 (unpublished)]; H. A. 
Haus, J. Appl. Phys. 32, 493 (1961). 

6 G. H. Plantinga, Philips Research Repts. 16, 462 (1961). 
• F. V. Bunkin, Soviet Phys.—JETP 14, 206 (1962). 
7 E. G. Harris, Phys. Rev. Letters 2, 34 (1959); also Oak Ridge 

National Laboratory Report, Oak Ridge, Tennessee and Uni
versity of Tennessee, Knoxville, Tennessee (unpublished). 

8 E. S. Weibel, Phys. Rev. Letters 2, 83 (1959). 
9 R. Z. Sagdeev and V. D. Shafranov, Soviet Phys.—JETP 12, 

130 (1961). 
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B. Derivation of the Radiation Temperature for 
Cyclotron Emission 

We now consider the special case when cyclotron 
emission is the major mechanism for radiation. The rate 
of energy radiation by a nonrelativistic electron, or
biting in a magnetic field of intensity B, is given by,10 

£2w6V(l+cos20) 
v(vi) = . (30) 

32TT 2 6 0 C 3 

The radiation appears at a frequency w equal to the 
electron cyclotron frequency cjb] vx is the speed of the 
electron in a direction perpendicular to the direction of 
the magnetic field; e0, the free-space permittivity, and 6 
is the angle between the direction of propagation of the 
radiation and the magnetic field. 

When collisions of electrons with other particles are 
the only mechanism for broadening the cyclotron emis
sion line (we neglect possible broadening due to the 
thermal motion of the electron) we obtain for frequencies 
at and close to a>& 

e2co bV (1+cos20) v(v)do> 
i?«(t>i)Ao= , (31) 

327r3e0r
} v2(v)+(o>-ub)

2 

where v(v) is the rate of collisions of electrons with 
molecules and is generally a function of the electron 
speed. Calculations, employing Boltzmann's equation 
and Maxwell's equations, show3 that v(v) is the collision 
frequency for momentum transfer. Note that when v is 
independent of v, the line broadening shown in Eq. (31) 
is that originally given by Lorentz. 

Making use of Eqs. (24), (26), and (31), we obtain the 
radiation temperature for our plasma 

r v{y) 
l f(v)vAdv 

J v2(v)+(a3-uib)
2 

kTr= . (32) 
r v(v) df(v) 
I v4dv 

J v*(v)+(a>-m)2 dU 

The radiation temperature is seen to be independent of 
the electron density and density gradients. This is of 
particular value in our experiments where radial gradi
ents in density do exist. I t is noteworthy that, in the 
determination of Tr, the absolute value of v{v) is not 
required, only its variation with velocity need be known. 

The angular dependence of the emission rate does not 
appear in Eq. (32). This and the invariance with elec
tron density come from our assumption of a tenuous 
plasma. For radiation from a dense medium 77 w (v) has a 
more complicated dependence on direction and, in this 
case, Tr would be a function of the direction of observa-

10 H. Rosner, Rept. Republic Aviation Corporation Report, 
AFSWC-TR-58-47, Farmingdale, Long Island, New York, 1958 
(unpublished). 

tion, relative to the magnetic field and of the electron 
density. 

The radiation temperature given by Eq. (32) is for 
the polarization that would generally be called the 
extraordinary ray,11 which is characterized by a resonant 
denominator in the expression for rfw(v). The other 
polarization does not exhibit a resonant denominator, 
and therefore this ray does not contribute appreciably 
to the total radiation temperature in the neighborhood 
of co=co&. 

Equation (32) is also applicable3 to radiation in the 
absence of a magnetic field (a; 6=0), when the emission 
77a, results from electron-neutral collisions. The radiation 
temperature takes on the same values as in the presence 
of a magnetic field but it does so at a different frequency 
of observation. For example: In the presence of a 
magnetic field the value of Tr at co = co& is the same as the 
value of Tr at co —> 0, in the absence of a magnetic field. 
In the presence of a magnetic field any significant 
variations in Tr that may occur in the narrow frequency 
range between aj=co& and |o>—ub\~v, would in the 
absence of a magnetic field be spread out over a much 
larger frequency range from u<£v to w^>v. The large 
variations shown in Fig. 1 in the presence of a magnetic 
field would not be seen in its absence, unless measure
ments were made over a very large frequency range. 

C. Evaluations of TT and Comparison 
with Measurements 

The evaluation of the radiation temperature Tr of 
Eq. (32) presupposes a knowledge of the distribution 
function f(v) and the collision frequency v{v). In calcu
lating Tr we made use of the known results of the colli
sion cross sections for neon,12 argon,13 hydrogen,14 

helium,15 and mercury,16 from which v(v) is derived. 
Since the distribution functions in the various dis

charges we have studied were not known, we chose an 
arbitrary distribution function with variable parame
ters. In the quantitative comparisons between experi
ments and theory, given later, these parameters are 
adjusted for a best fit between calculations and measure
ments, enabling us to estimate the distribution function 
in the discharges studied. 

We chose a distribution function of the form, 

/(i;)ccexp(-fa'0, (33) 
11V. L. Ginzburg, Propagation of Electromagnetic Waves in 

Plasma (Gordon and Breach Science Publishers, New York, 1962). 
12 R. B. Brode, Rev. Mod. Phys. 5, 257 (1933). A. L. Gilardini 

and S. C. Brown, Phys. Rev. 105, 31 (1957). 
13 C. Ramsauer and R. Kollath, Ann. Physik 12, 529 (1932); 

J. C. Bowe, Phys. Rev. 117, 1416 (1960); also R. Brode, refer
ence 12. 

14 R. W. Crompton and D. J. Sutton, Proc. Roy. Soc. (London) 
A215, 467 (1952); G. Bekefi and S. C. Brown, Phys. Rev. 112, 159 
(1958); also R. Brode, reference 12. 

15 L. Gould and S. C. Brown, Phys. Rev. 95, 897 (1954); also R. 
Brode, reference 12. 

16 H. Margenau and F. P. Adler, Phys. Rev. 79, 970 (1950); 
C. W. McCutchen, ibid. 112, 1848 (1958); also R. Brode, refer
ence 12. 
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where b and I are arbitrary positive parameters. The 
distribution function is normalized such that 

f 
J o 

f(v)Awv<idv=N. 

The mean energy II is given by 

tj=N-l\ ±tnv*f(v)4Trv2dv. 
Jo 

(34) 

(35) 

When 1=2, f is a Maxwellian distribution; when Z=4, 
/ is a Druyvesteyn distribution. 

If the applied magnetic field is parallel to the applied 
electric field and if inelastic collisions could be neg
lected, the first order, spherically symmetric distribution 
function of the form given above is obtained.17 We as
sume f(v) independent of magnetic field over a range of 
magnetic fields around co=co&, where the peaks in the 
apparent electron temperature have been observed. 
Since, in the discharges studied, inelastic collisions can
not be neglected, the choice of the distribution function 
given by Eq. (33) is at best a crude trial function. 

The collision frequency has a complicated energy de
pendence, and the expression for the radiation tempera
ture [Eq. (32)] was evaluated on a digital computer for 
various combinations of the distribution parameter / 
and the mean energy U. Figure 3 (a) shows the results of 
calculations for hydrogen, for one value of the distribu
tion parameter, Z=4, and for various electron energies 
U. We observe that for electrons of low energy (U=l 
eV) the radiation temperature is a maximum at the 
electron cyclotron frequency, A = 0, on the abscissa of 

io IO 2 io3 io4 

NORMALIZED FREQUENCY A 
(b) 

FIG. 3. The radiation temperature calculated for (a) hydrogen 
and (b) mercury as a function of the normalized frequency, A, 
defined by Eq. (36). The distribution parameter / defined by Eq. 
(S3) equals 4. 

Fig. 3. The parameter A is denned as 

A= h-co fel2/Cl02^o(2Vw)1/2]2 

= 2.84XlO-16 |(aJ-o) fe)/^0 |2
J 

(36) 

17 W. P. Allis, in Handbuch der Fhysik, edited by S. Fliigge 
(Springer-Verlag, Berlin, 1956), Vol. 21, pp. 383-444. 

where po is the gas pressure in mm Hg normalized to 
zero degrees centigrade. For values of | co—co & | ^>0 (A»0) , 
the radiation temperature drops off and reaches an 
asymptotic value. We show only one-half of the spectral 
distribution of Tr since the curve is symmetrical about 
co = co6. Thus, Tr exhibits a peak at a frequency equal to 
the electron cyclotron frequency. 

As the mean electron energy increases, the peak be
comes smaller and vanishes for an electron energy 
U=S eV. A peak occurs whenever the collision fre
quency is an increasing function of velocity, in the range 
where the distribution function contributes most to the 
integrands of Eq. (32). This contribution is predominant 
in the neighborhood of electron energies equal to the 
mean electron energy. On the other hand, no peaks 
occur when the mean electron energy falls in the energy 
range where the collision frequency is essentially inde
pendent of velocity. 

Calculations of Tr in mercury are shown in Fig. 3(b). 
At low electron energies the collision frequency is a very 
steeply rising function of velocity and for that reason 
the peak in Tr greatly exceeds that computed in hydro
gen. We compute a dip in Tr for an electron energy of 
3 eV. In this energy range the collision frequency is a 
steeply decreasing function of velocity and in such cases 
dips rather than peaks can arise. 

Calculations for other gases show similar charac
teristics. If most electrons of a plasma are situated in an 
energy range in which the collision frequency is an in
creasing function of velocity, the radiation temperature 
exhibits a peak; if most electrons are in an energy range 
where v(v) is a decreasing function of velocity, a dip can 
be expected. When the collision frequency is essentially 
independent of velocity, in the energy range in question, 
Tr shows no frequency dependence, which can be 
deduced directly from Eq. (32) by setting v(v) equal to 
a constant. 

The calculations for argon are shown in Figs. 4(a) and 
4(b). Figure 4(a) shows the radiation temperature at 
co = co& as a function of the mean electron energy U for 
different values of the distribution parameter I. When 
the distribution function is Maxwellian (1= 2) the radia
tion temperature is equal to the electron temperature 
defined by T=2eU/3k. When 1=5 the radiation tem
perature exceeds the value 2et)/3k and is less than this 
value when 1=1. (l>2 implies that there is an excess of 
slowr particles and a deficiency of fast particles, as com
pared with a Maxwellian distribution, and vice versa for 
Z<2.) 

Figure 4(b) shows the ratio of the peak value of the 
radiation temperature in argon at co^co?, to its asymp
totic value at co —> oo, as a function of the mean electron 
energy U, for different values of the distribution 
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FIG. 4. (a) The radiation temperature at w=cofc, calculated as a 
function of the mean electron energy for various values of the 
distribution parameter /. (b) The ratio of the radiation tempera
ture at a)=o)b to the radiation temperature at o> —• « , calculated as 
a function of the mean electron energy, for various values of the 
distribution parameter /. 

parameter I. This graph illustrates the magnitudes of the 
peaks above the background value of Tri or of the dips 
below this background. We see that even for small de
partures from a Maxwellian distribution (e.g., 1=3) the 
radiation temperature can be as large as twice that of a 
plasma with a Maxwellian distribution containing the 
same number of electrons with the same mean energy. 

On the basis of these calculations, the experimental 
results shown in Figs. 1 and 2 can now be understood. 
The large peaks in the radiation temperature at cyclo
tron resonance in neon, argon, and xenon (Fig. 1) are 
due to non-Maxwellian electron distributions in gases 
with strongly increasing collision frequencies v{v) at the 
operating energies of these plasmas (2 to 6 ev). The 
absence of peaks in Tr in hydrogen, helium, and mer
cury, as shown in Fig. 2, results from one of two effects. 
Either these plasmas maintain themselves at energies 
where the collision frequency is approximately invariant 
with energy [as noted before, theory shows that when 
v(v) is constant, Tr is independent of the frequency or 
magnetic field, whatever the distribution function may 
be] or the absence of peaks is due to an electron dis
tribution close to a Maxwellian. We cannot distinguish 
between one or the other possibility. 

A physical explanation of the variations in Tr is the 
following. Consider the helical electron motion in the dc 
magnetic field. The motion is interrupted at random 
intervals by collisions with atoms. Between collisions, 
the electron motion is either in such a phase with the 
radiation field that it absorbs energy from it (absorp
tion), or the phase of the motion is such that it re
linquishes some of its energy to the field (stimulated 
emission). If the gas is one in which the electron-neutral 
collision frequency v increases with energy, an electron 
losing energy will acquire a lower probability of collision. 
On the other hand, an electron gaining energy acquires 
a larger probability. Those electrons which find them

selves in phase for stimulated emission remain in phase 
for this process longer (because of the lower v) than 
those electrons which find themselves in phase for 
absorption. Since initially the probability that an elec
tron be in phase for either process is the same, it is 
possible to increase stimulated emission relative to the 
absorption from electrons in a given velocity interval. 
The reverse is true if v decreases with increasing speed. 

The net absorption is the sum of all contributions 
from all velocity intervals of the distribution of electron 
speeds. A general comparison of the amount of absorp
tion in a low-energy interval (where electrons can 
absorb relatively large amounts of energy due to their 
low v, but have no energy to relinquish) with the 
amount of stimulated emission in a high-energy interval 
shows that for most distribution functions net absorp
tion occurs even though v increases with energy. Never
theless, radiation intensities in excess of those from 
plasmas in thermal equilibrium can be obtained as con
firmed by our experiments and calculations. 

So far, we have only discussed the radiation temper
ature observed close to the cyclotron frequency. The 
general trends of a decreasing radiation temperature 
with increasing magnetic field, which forms the back
ground for the peaks seen in the experimental curves of 
Fig. 1, are not explained on the basis of the present 
theory. They are, however, explained by the theory of 
the positive column, which states that the reduction of 
radial diffusion in the positive column with increasing 
magnetic field, enables the plasma to maintain the same 
current at a lower axial voltage. This leads to a decrease 
of the mean electron energy with increasing magnetic 
field. The rate of decrease of U with increasing magnetic 
field is smaller the higher the pressure and the higher the 
ionic mass. Thus, the slope of Trj shown in Fig. 1, 
decreases as the mass of the ion increases. 

The general trend of the radiation temperature de
scribed above is violated in hydrogen and helium, as 
seen in Fig. 2. Here we note that Tr increases with 
magnetic field over part of the range. The increase in 
Tr with magnetic field occurs at precisely the magnetic 
field at which the instability of Lehnert,18 Kadomtsev 
and Nedospasov19 sets in. This instability is charac
terized by an increase in the axial voltage at a critical 
magnetic field, which we observed to be accompanied by 
the rise in the radiation temperature. [ In the particular 
measurements shown in Fig. 2 the onset of the insta
bility occurred at 650 G for hydrogen and at approxi
mately 1200 G for helium. In the remaining gases of 
Figs. 1 and 2 no instability was observed because it 
occurs outside the range of the available magnetic fields 
(2000 G).] 

Various tests showed that the presence or absence of 
peaks was not associated with the above instability. For 

18 F. C. Hoh and B. Lehnert, Phys. Fluids 3, 600 (1960). 
19 B. B. Kadomtsev and A. V. Nedospasov, J. Nucl. Energv 

CI, 230 (1960). 
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FIG. 5. The radiation temperature 
as a function of magnetic field. The 
points are experimental values for a 
current of 10 mA. The solid curves 
were computed for the following 
values of the distribution parameter / 
and the mean energy U: curve (a) 
/ = 3.4; J7=7.75 eV; curve (b): 1 = 3.3 
£7 = 6.35 eV; curve (c): / = 4.13 
£7 = 4.55 eV; curve (d): / = 3.02 
£7 = 4.52 eV. 
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example, in helium, no peak was observed at co = co&, 
whether the critical field for the onset of the instability 
was adjusted to fall at, below, or above a) = co&. 

D. Determination of the Mean Energy and Velocity 
Distribution of Electrons in Neon and Argon 

By assuming that the distribution functions f(v) in 
the positive column of the dc discharges in neon and 
argon are of the form given by Eq. (33), we estimate 
f(v) and U by the following procedure. We take the 
experimental value of the radiation temperature Tr at 
oo=oib and Tr at co —> oo [obtained from the value of Tr 

at the dashed line directly below the resonance (see 
Fig. 1)] and transfer these values to Figs. 4(a) and 4(b). 
Thus, Fig. 4(a) gives us a set of values of I and U. We 
get another such set from Fig. 4(b). By plotting U 
versus / for both sets of points, we obtain two curves 
that have one point of intersection. This point of 
intersection gives us the sought for values of U and L 
Whether the distribution function given by Eq. (33), 
with the values of U and I obtained by the above 
method, is appropriate to the particular discharges 
studied, can now be determined by computing the com
plete spectrum of Tr and comparing it with experiment. 

Figures 5(a) and 5(b) compare the calculated and 
measured values of the radiation temperature in neon. 
The results are given for twro values of gas pressure, for 
magnetic fields in the immediate vicinity of o?&=w. 
Figures 5(c) and 5(d) present similar comparisons in 
argon discharges. 

The experiments are seen to be in satisfactory agree
ment with the calculated values. We found that a small 
change in U and / from the values that give the best fit 
results in large disagreement between the calculated and 
measured values of the radiation temperature. This 

indicates that the method by which we estimate U and / 
is quite accurate. However, this does not mean that 
other forms of the distribution function may not give 
equally good fits to the experimental results, and that 
the distribution function that we chose is unique. We 
have not tried other distribution functions. 

Figure 6(a) presents the values of U and I in neon for 
various gas pressures ranging from approximately 0.1 to 
3 mm Hg, for a positive column immersed in a dc 
magnetic field equal to 1000 G. We note that over this 
range of pressure the distribution parameter I remains 
constant. The mean energy decreases with increasing 
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FIG. 6. Variation of the 
mean electron energy U and 
of the distribution parame
ter / with pressure, in neon 
and argon. 
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FIG. 7. The width and 
the height of the resonance 
peaks as a function of pres
sure. 

0 t 2 
GAS PRFSSURE p 0 (MM-Hg) 

pressure in agreement with the theory of the positive 
column. 

Figure 6(b) illustrates how these quantities (U and I) 
behave in argon, over a range of gas pressure from about 
0.1 to 1 mm Hg. The distribution parameter I varies 
considerably with gas pressure. The departure from a 
Maxwellian distribution appears to be greater at the 
low than at the high pressures. The difference in the 
behavior of / as a function of pressure in neon and argon 
may be due to the very marked difference in the ve
locity dependence of the respective collision cross sec
tions for electron-neutral encounters in the two gases. 
Whereas in neon the cross section is sensibly constant 
with energy, in argon it is very energy dependent and 
exhibits a deep Ramsauer minimum. 

In referring to the formula in Eq. (32) for the radia
tion temperature, it can be shown that if the distribution 
function is independent of the gas pressure and of the 
electron density, Tr exhibits the following properties: 

(a) The width of the peak or dip in Tr is proportional 
to the collision frequency and thus to the gas pressure, 
and is independent of the electron density. 

(b) The height of the peak or dip normalized to Tr 

at co —* oo is independent of both the gas pressure and 
the electron density. 

These properties of the radiation temperature lend 
themselves to experimental check in the case of neon 
(where I was found to be independent of pressure). This 
is shown in Fig. 7. We observe that the width of the peak 
is proportional to the gas pressure and that the height 
of the peak normalized to Tr at co —•» co is constant writh 
pressure. In the limit of zero pressure the apparent 
width of the peak tends to a value of 10 G due to the 
inhomogeneity of the magnetic field over the 50-cm-long 
section of the positive column from which the microwave 
radiation was received. Measurements of the width and 
the height of the peak as a function of electron density 
are not shown. However, we found20 that the normalized 
height and the width remained constant for discharge 
currents from 2 to 200 mA, 

All our experiments were made at such low electron 
densities that the plasma frequency cop was less than co. 

20 H. Fields, G. Bekefi, and S. C. Brown, Proceedings of the Fifth 
International Conference on Ionization Phenomena in Gases (North-
Holland Publishing Company, Amsterdam, 1961), pp. 367-375. 

As the current and thus the electron density are in
creased to a value where ccp is approximately equal to or 
greater than co, the peak in the radiation temperature 
at co = co h broadens out and disappears with increasing 
current; simultaneously peaks in the emission, j w , in the 
absorption, au, and in Tr are observed21 at the higher 
harmonics co=?zco&, where n = 2, 3, 4 - - - . These effects 
are not understood and fall outside the range of this 
investigation that deals exclusively with tenuous plas
mas. The peaks at the higher harmonics are not as
sociated with the phenomena discussed in this paper. 
They occur in all gases studied (helium, argon, mercury) 
and their presence is, therefore, not associated with the 
energy dependence of the electron-atom collision cross 
section. 

III. EXPERIMENTAL TECHNIQUE 

Equation (29) suggests that the radiation tempera
ture can be obtained directly from the intensity, in the 
limit, when the optical depth r is greater than unity. 
Since in our tenuous plasmas r was generally less than 
unity, we adopted a technique wherein the measure
ments of the radiation temperature were independent 
of the magnitude of the optical depth.22 

We illuminate the plasma with radiation incident on 
the side away from the observer. The total intensity 
that leaves the plasma is then given by 

7w = Jw(inc) exp(—r) 
+ (co2 /87r3c2)^r r[l-exp(-T)], (37) 

where Jw(inc) is the intensity of radiation incident on 
the back side of the plasma. The intensity / „ was then 
compared periodically with radiation Jw(inc) that has 
not traversed the plasma. We adjust /^(inc) until the 
radiation along the two channels is the same (7w(inc) 
= /„) . I t then follows from Eq. (37) that 

Iu(inc)=(^/Swh2)kTr (38) 

independent of the optical depth r. 
The assumed constancy of the radiation temperature 

implicit in Eqs. (37) and (38) may not be true in the 
discharges studied. W7e varied the optical depth r from 
approximately 0.1 to 2 and measured the radiation 
temperature with and without the use of the above 
substitution method. All these methods yielded identical 
values of Tr as a function of magnetic field. From these 
measurements we conclude that the radiation tempera
ture must have been sensibly constant over the volume 
of plasma studied and that the substitution method 
used of finding Tr in a tenuous plasma was free from 
experimental anomalies. 

21 G. Bekefi, J. D. Coccoli, E. B. Hooper, Jr., and S. J. Buchs-
baum, Phys. Rev. Letters 9, 6 (1962). 

22 G. Bekefi and S. C. Brown, J. Appl. Phys. 32, 25 (1961). For 
transient measurements, see D. Formato and A. Gilardini, Pro
ceedings of the Fourth International Conference on Ionization Phe
nomena in Gases, Uppsala, Sweden (North-Holland Publishing 
Company, Amsterdam, 1960), Vol. 1, pp. 1A99-104. 
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The radiation temperature was measured in the posi
tive column of a glow discharge, produced in a tube 100 
cm long and 1.25 cm in radius. A heated oxide-coated 
cathode and a water-cooled nickel anode were used for 
electrodes. The tube was continuously pumped and 
after activation of the cathode pressures better than 
10~7 mm Hg could be maintained. Before taking meas
urements the tube was cleaned by passing strong cur
rents through it and subsequently pumping the gas out. 
The measurements of the radiation temperature in the 
mercury vapor discharge were made in a tube whose 
walls could be heated up to 150°C. A temperature-
controlled bath provided a means of varying the pres
sure in the mercury discharge tube. 

The measurements were made with an 5-band radi
ometer that has been described in detail elsewhere.22 The 
discharge tube was inserted into the broad face of a 
section of 5-band rectangular waveguide at an angle of 
8° with the waveguide axis. A 50-cm-long section of the 
positive column was thus situated within the waveguide 
section that comprised one arm of the radiometer. 
Flanges, designed to be beyond cutoff for the guide, 
were used to insure that any possible radiation gener
ated at the electrodes could not enter the guide. 

The section of waveguide containing the discharge 
tube was mounted in a solenoid, 120 cm long, in such a 
way that the tube was situated along the axis of the 
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solenoid. The magnetic field could be varied continu
ously from 0 to 2000 G, and was uniform to within 
1% over the 50-cm-long section of the positive column 
from which the microwave radiation was received. 

Since the experiments were performed in a waveguide 
structure, the source function for the radiation now 
differs from that given in free space. For one mode of 
propagation of the waveguide, one finds that 

S„(u,Tr) = kTrdco/2T. (39) 

Note, however, that the radiation temperature as given 
by Eq. (32) remains unchanged, due to the fact that 
the radiation from our tenuous plasmas couples weakly 
to the waveguide. 
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